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Abstract – This paper presents the underlying concepts of managing Quality of Service in a computer network. It shows that techniques 

used, namely 1) over-provisioning; 2) buffering; 3) traffic shaping; 4) leaky bucket algorithm; 5) token bucket algorithm; 6) resource 

reservation; 7)admission control; 8)packet scheduling, are fundamental building blocks required for managing quality of services in a 

network. This paper provides basic understanding of all the techniques given above. 
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1 INTRODUCTION              

he Internet was designed as a best-effort network, 
offering no QoS assurances for the supported 
services. However, the imminent dominance of the 

Internet Protocol(IP) as a de-facto telecommunication 
standard is the leading factor in an increasing demand for 
the efficient support of real-time services over the Internet 
with QoS assurance [2].  

The common methods for offering QoS discussed 
in this paper are over-provisioning, buffering, traffic 
shaping, resource reservation, admission control and 
packet scheduling. With the growth of multimedia 
networking, attempts at guaranteeing quality of service 
through network and protocol design are needed. No single 
technique provides efficient, dependable QoS in an 
optimum way. Instead, a variety of techniques have been 
developed, with practical solutions often combining 
multiple techniques [2]. 
 One way of supporting QoS in the Internet is 
through traffic shaping, where routing of QoS packets does 
not follow the traditional IP routing protocols (i.e. OSPF 
and BGP), but instead takes into account available 
resources and expected traffic on the various network links. 
Following this approach, some paths can be over-
provisioned and used for the most demanding packet flows 
(marked with the appropriate label), whereas others could 
be left for the best-effort traffic [1]. 
 An independent but important aspect in QoS 
provision is the existence and operation of policy and 
admission control inside the routers.  
 

Policy control determines whether the requesting user is 
entitled to make the requested reservation, while admission 

control determines whether the node has sufficient 
resources to facilitate the reservation. If both checks 
succeed, the requested reservation can be established by 
configuring the respective router parameters. The 
techniques for managing quality of service are described 
below [2].  

2 OVER-PROVISIONING 

An easy solution is to provide so much router capacity, 
buffer space, and bandwidth that the packets just fly 
through easily. The trouble with this solution is that it is 
expensive. As time goes on and designers have a better idea 
of how much is enough, this technique may even become 
practical. To some extent, the telephone system is over-
provisioned. It is rare to pick up a telephone and not get a 
dial tone instantly. There is simply so much capacity 
available there that demand can always be met [4]. 

3 BUFFERING 

Flows can be buffered on the receiving side before being 
delivered. Buffering them does not affect the reliability or 
bandwidth, and increases the delay, but it smoothes out the 
jitter. For audio and video on demand, jitter is the main 
problem, so this technique helps a lot [4]. 

In Fig. 1 we see a stream of packets being delivered 
with substantial jitter. Packet 1 is sent from the server at t = 
0 sec and arrives at the client at t = 1 sec. Packet 2 
undergoes more delay and takes 2 sec to arrive. As the 
packets arrive, they are buffered on the client machine. 
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Figure 1. Smoothing the output stream by buffering 
packets. 

 

At  t = 10 sec, playback begins. At this time, 
packets 1 through 6 have been buffered so that they can be 
removed from the buffer at uniform intervals for smooth 
play. However, packet 8 has been delayed so much that it is 
not available when its play slot comes up, so playback must 
stop until it arrives, creating an annoying gap in the music 
or movie. This problem can be alleviated by delaying the 
starting time even more, although doing so also requires a 
larger buffer [4].  

4 TRAFFIC SHAPING 

Traffic shaping aims at limiting the variations of 
transmission rates within a negotiated per user flow rate 
and burstiness [3]. Traffic shaping is a traffic 
management technique which delays some or 
all datagrams to bring them into compliance with a 
desired traffic profile. In the above example, the source 
outputs the packets with a uniform spacing between them, 
but in other cases, they may be emitted irregularly, which 
may cause congestion to occur in the network. Non-
uniform output is common if the server is handling many 
streams at once, and it also allows other actions, such as fast 
forward and rewind, user authentication, and so on. Also, 
the approach we used here (buffering) is not always 
possible, for example, with videoconferencing. However, if 
something could be done to make the server (and hosts in 
general) transmit at a uniform rate, quality of service would 
be better. Traffic shaping smooths out the traffic on the 
server side, rather than on the client side [4]. 

Traffic shaping is about regulating the average rate 
(and burstiness) of data transmission. When a connection is 
set up, the user and the subnet (i.e., the customer and the 
carrier) agree on a certain traffic pattern (i.e., shape) for that 
circuit. Sometimes this is called a service level agreement. 
As long as the customer fulfills her part of the bargain and 
only sends packets according to the agreed-on contract, the 
carrier promises to deliver them all in a timely fashion. 
Traffic shaping reduces congestion and thus helps the 
carrier live up to its promise. Such agreements are not so 
important for file transfers but are of great importance for 
real-time data, such as audio and video connections, which 
have stringent quality-of-service requirements [4]. 

5 THE LEAKY BUCKET ALGORITHM 

Imagine a bucket with a small hole in the bottom, as 
illustrated in Fig. 2(a). No matter the rate at which water 

enters the bucket, the outflow is at a constant rate, r, when 
there is any water in the bucket and zero when the bucket is 
empty. Also, once the bucket is full, any additional water 
entering it spills over the sides and is lost (i.e., does not 
appear in the output stream under the hole) [4]. 
 

 
Figure 2. (a) A leaky bucket with water. (b) A leaky bucket 
with packets. 
 
 The same idea can be applied to packets, as shown 
in Fig. 2(b). Conceptually, each host is connected to the 
network by an interface containing a leaky bucket, that is, a 
finite internal queue. If a packet arrives at the queue when 
it is full, the packet is discarded. In other words, if one or 
more processes within the host try to send a packet when 
the maximum number is already queued, the new packet is 
unceremoniously discarded. This arrangement can be built 
into the hardware interface or simulated by the host 
operating system. It was first proposed by Turner (1986) 
and is called the leaky bucket algorithm. In fact, it is 
nothing other than a single-server queueing system with 
constant service time [4]. 

The host is allowed to put one packet per clock tick 
onto the network. Again, this can be enforced by the 
interface card or by the operating system. This mechanism 
turns an uneven flow of packets from the user processes 
inside the host into an even flow of packets onto the 
network, smoothing out bursts and greatly reducing the 
chances of congestion. 

When all the packets are of the same size (e.g., 
ATM cells), this algorithm can be used as described above. 
However, when variable-sized packets are being used, it is 
often better to allow a fixed number of bytes per tick, rather 
than just one packet. Thus, if the rule is 1024 bytes per tick, 
a single 1024-byte packet can be admitted on a tick, two 
512-byte packets, four 256-byte packets, and so on. If the 
residual byte count is too low, the next packet must wait 
until the next tick [4]. 

http://en.wikipedia.org/wiki/Datagram
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6 THE TOKEN BUCKET ALGORITHM 

The leaky bucket algorithm enforces a rigid output pattern 
at the average rate, no matter how bursty the traffic is. It is 
important allow the output to speed up somewhat when 
large bursts arrive, so a more flexible algorithm is needed, 
preferably one that never loses data. One such algorithm is 
the token bucket algorithm. In this algorithm, the leaky 
bucket holds tokens, generated by a clock at the rate of one 

token every T sec. In Fig. 3(a) we see a bucket holding 
three tokens, with five packets waiting to be transmitted. 
For a packet to be transmitted, it must capture and destroy 
one token. In Fig. 3(b) we see that three of the five packets 
have gotten through, but the other two are stuck waiting 
for two more tokens to be generated [4]. 
 

 
Figure 3. The token bucket algorithm. (a) Before. (b) After. 
 

The token bucket algorithm provides a different 
kind of traffic shaping than that of the leaky bucket 
algorithm. The leaky bucket algorithm does not allow idle 
hosts to save up permission to send large bursts later. The 
token bucket algorithm does allow saving, up to the 
maximum size of the bucket, n. This property means that 
bursts of up to n packets can be sent at once, allowing some 
burstiness in the output stream and giving faster response 
to sudden bursts of input. 

Another difference between the two algorithms is 
that the token bucket algorithm throws away tokens (i.e., 
transmission capacity) when the bucket fills up but never 
discards packets. In contrast, the leaky bucket algorithm 
discards packets when the bucket fills up. 

Here, too, a minor variant is possible, in which 
each token represents the right to send not one packet, but 
k bytes. A packet can only be transmitted if enough tokens 
are available to cover its length in bytes. Fractional tokens 
are kept for future use. 

The leaky bucket and token bucket algorithms can 
also be used to smooth traffic between routers, as well as to 
regulate host output as in our examples. However, one 

clear difference is that a token bucket regulating a host can 
make the host stop sending when the rules say it must. 
Telling a router to stop sending while its input keeps 
pouring in may result in lost data. 

The implementation of the basic token bucket 
algorithm is just a variable that counts tokens. The counter 

is incremented by one every T and decremented by one 
whenever a packet is sent. When the counter hits zero, no 
packets may be sent. In the byte-count variant, the counter 

is incremented by k bytes every T and decremented by 
the length of each packet sent. 

Policing all these schemes can be a bit tricky. 
Essentially, the network has to simulate the algorithm and 
make sure that no more packets or bytes are being sent than 
are permitted. Nevertheless, these tools provide ways to 
shape the network traffic into more manageable forms to 
assist meeting quality-of-service requirements [4]. 

7 RESOURCE RESERVATION 

Being able to regulate the shape of the offered traffic is a 
good start to guaranteeing the quality of service. However, 
effectively using this information implicitly means 
requiring all the packets of a flow to follow the same route. 
Spraying them over routers at random makes it hard to 
guarantee anything. As a consequence, something similar 
to a virtual circuit has to be set up from the source to the 
destination, and all the packets that belong to the flow must 
follow this route. 

Once we have a specific route for a flow, it 
becomes possible to reserve resources along that route to 
make sure the needed capacity is available. Three different 
kinds of resources can potentially be reserved: 

1. Bandwidth. 
2. Buffer space. 
3. CPU cycles. 

 
The first one, bandwidth, is the most obvious. If a 

flow requires 1 Mbps and the outgoing line has a capacity 
of 2 Mbps, trying to direct three flows through that line is 
not going to work. Thus, reserving bandwidth means not 
oversubscribing any output line [4]. 

A second resource that is often in short supply is 
buffer space. When a packet arrives, it is usually deposited 
on the network interface card by the hardware itself. The 
router software then has to copy it to a buffer in RAM and 
queue that buffer for transmission on the chosen outgoing 
line. If no buffer is available, the packet has to be discarded 
since there is no place to put it. For a good quality of 
service, some buffers can be reserved for a specific flow so 
that flow does not have to compete for buffers with other 
flows. There will always be a buffer available when the 
flow needs one, up to some maximum. 

Finally, CPU cycles are also a scarce resource. It 
takes router CPU time to process a packet, so a router can 
process only a certain number of packets per second. 
Making sure that the CPU is not overloaded is needed to 
ensure timely processing of each packet. 
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At first glance, it might appear that if it takes, say, 
1 µsec to process a packet, a router can process 1 million 
packets/sec. This observation is not true because there will 
always be idle periods due to statistical fluctuations in the 
load. If the CPU needs every single cycle to get its work 
done, losing even a few cycles due to occasional idleness 
creates a backlog it can never get rid of [4]. 

8 ADMISSION CONTROL 

Now we are at the point where the incoming traffic from 
some flow is well shaped and can potentially follow a 
single route in which capacity can be reserved in advance 
on the routers along the path. When such a flow is offered 
to a router, it has to decide, based on its capacity and how 
many commitments it has already made for other flows, 
whether to admit or reject the flow. 

The decision to accept or reject a flow is not a 
simple matter of comparing the (bandwidth, buffers, cycles) 
requested by the flow with the router's excess capacity in 
those three dimensions. It is a little more complicated than 
that. To start with, although some applications may know 
about their bandwidth requirements, few know about 
buffers or CPU cycles, so at the minimum, a different way 
is needed to describe flows. Next, some applications are far 
more tolerant of an occasional missed deadline than others. 
Finally, some applications may be willing to haggle about 
the flow parameters and others may not. For example, a 
movie viewer that normally runs at 30 frames/sec may be 
willing to drop back to 25 frames/sec if there is not enough 
free bandwidth to support 30 frames/sec. Similarly, the 
number of pixels per frame, audio bandwidth, and other 
properties may be adjustable. 

As there are many parties may be involved in the 
flow negotiation (the sender, the receiver, and all the 
routers along the path between them), flows must be 
described accurately in terms of specific parameters that 
can be negotiated. A set of such parameters is called a flow 
specification. Typically, the sender (e.g., the video server) 
produces a flow specification proposing the parameters it 
would like to use. As the specification propagates along the 
route, each router examines it and modifies the parameters 
as need be. The modifications can only reduce the flow, not 
increase it (e.g., a lower data rate, not a higher one). When 
it gets to the other end, the parameters can be established. 
As an example of what can be in a flow specification, 
consider the example of Table 1. It has five parameters, the 
first of which, the Token bucket rate, is the number of bytes 
per second that are put into the bucket. This is the 
maximum sustained rate the sender may transmit, 
averaged over a long time interval. 
 
Table 1. An example flow specification. 

Parameter Unit 

Token bucket rate Bytes/sec 

Token bucket size Bytes 

Peak data rate Bytes/sec 

Minimum packet size Bytes 

Maximum packet size Bytes 

 
The second parameter is the size of the bucket in 

bytes. If, for example, the Token bucket rate is 1 Mbps and 
the Token bucket size is 500 KB, the bucket can fill 
continuously for 4 sec before it fills up (in the absence of 
any transmissions). Any tokens sent after that are lost. The 
third parameter, the Peak data rate, is the maximum 
tolerated transmission rate, even for brief time intervals. 
The sender must never exceed this rate. The last two 
parameters specify the minimum and maximum packet 
sizes, including the transport and network layer headers 
(e.g., TCP and IP). The minimum size is important because 
processing each packet takes some fixed time, no matter 
how short. A router may be prepared to handle 10,000 
packets/sec of 1 KB each, but not be prepared to handle 
100,000 packets/sec of 50 bytes each, even though this 
represents a lower data rate. The maximum packet size is 
important due to internal network limitations that may not 
be exceeded. For example, if part of the path goes over an 
Ethernet, the maximum packet size will be restricted to no 
more than 1500 bytes no matter what the rest of the 
network can handle [4]. 

9 PACKET SCHEDULING 

If a router is handling multiple flows, there is a danger that 
one flow will hog too much of its capacity and starve all the 
other flows. Processing packets in the order of their arrival 
means that an aggressive sender can capture most of the 
capacity of the routers its packets traverse, reducing the 
quality of service for others. To thwart such attempts, 
various packet scheduling algorithms have been devised. 
One of the first ones was the fair queueing algorithm. The 
essence of the algorithm is that routers have separate 
queues for each output line, one for each flow. When a line 
becomes idle, the router scans the queues using round 
robin, taking the first packet on the next queue. In this way, 
with n hosts competing for a given output line, each host 
gets to send one out of every n packets. Sending more 
packets will not improve this fraction. 
Although a start, the algorithm has a problem: it gives more 
bandwidth to hosts that use large packets than to hosts that 
use small packets. An improvement is done to this 
algorithm in such a way so as to simulate a byte-by-byte 
round robin, instead of a packet-by-packet round robin. In 
effect, it scans the queues repeatedly, byte-for-byte, until it 
finds the tick on which each packet will be finished. The 
packets are then sorted in order of their finishing and sent 
in that order. The algorithm is illustrated in Fig. 4. 
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Figure 4. (a) A router with five packets queued for line O. 
(b) Finishing times for the five packets. 
 

In Fig. 4(a) we see packets of length 2 to 6 bytes. At 
(virtual) clock tick 1, the first byte of the packet on line A is 
sent. Then goes the first byte of the packet on line B, and so 
on. The first packet to finish is C, after eight ticks. The 
sorted order is given in Fig. 4(b). In the absence of new 
arrivals, the packets will be sent in the order listed, from C 
to A. 

One problem with this algorithm is that it gives all 
hosts the same priority. In many situations, it is desirable to 
give video servers more bandwidth than regular file servers 
so that they can be given two or more bytes per tick. This 
modified algorithm is called weighted fair queueing and is 
widely used. Sometimes the weight is equal to the number 
of flows coming out of a machine, so each process gets 
equal bandwidth [4].  

10 CONCLUSION 

The key contributions of this paper were to provide details 
for managing the quality of services in a network. Network 
quality of service is a critical element of a successful 
converged networking design. Although over-provisioning 
the network bandwidth may provide adequate QoS 
temporarily, additional mechanisms including traffic 
shaping, buffering and admission control should be 
designed into the network infrastructure. Significant 
advances are constantly taking place to increase the 
capabilities and its use in wireless devices also.  
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