
International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Managing Quality of Service in Computer
Networks

Harshvardhan Aggarwal

Abstract – This paper presents the underlying concepts of managing Quality of Service in a computer network. It shows that techniques

used, namely 1) over-provisioning; 2) buffering; 3) traffic shaping; 4) leaky bucket algorithm; 5) token bucket algorithm; 6) resource

reservation; 7)admission control; 8)packet scheduling, are fundamental building blocks required for managing quality of services in a

network. This paper provides basic understanding of all the techniques given above.

Index terms – Traffic shaping, best-effort network, over-provisioning, datagrams, bursty data, fair queueing algorithm, weighted fair

queuing, buffering, token bucket, virtual circuit.

—————————— ——————————

1 INTRODUCTION

he Internet was designed as a best-effort network,
offering no QoS assurances for the supported
services. However, the imminent dominance of the

Internet Protocol(IP) as a de-facto telecommunication
standard is the leading factor in an increasing demand for
the efficient support of real-time services over the Internet
with QoS assurance [2].

The common methods for offering QoS discussed
in this paper are over-provisioning, buffering, traffic
shaping, resource reservation, admission control and
packet scheduling. With the growth of multimedia
networking, attempts at guaranteeing quality of service
through network and protocol design are needed. No single
technique provides efficient, dependable QoS in an
optimum way. Instead, a variety of techniques have been
developed, with practical solutions often combining
multiple techniques [2].
 One way of supporting QoS in the Internet is
through traffic shaping, where routing of QoS packets does
not follow the traditional IP routing protocols (i.e. OSPF
and BGP), but instead takes into account available
resources and expected traffic on the various network links.
Following this approach, some paths can be over-
provisioned and used for the most demanding packet flows
(marked with the appropriate label), whereas others could
be left for the best-effort traffic [1].
 An independent but important aspect in QoS
provision is the existence and operation of policy and
admission control inside the routers.

Policy control determines whether the requesting user is
entitled to make the requested reservation, while admission

control determines whether the node has sufficient
resources to facilitate the reservation. If both checks
succeed, the requested reservation can be established by
configuring the respective router parameters. The
techniques for managing quality of service are described
below [2].

2 OVER-PROVISIONING

An easy solution is to provide so much router capacity,
buffer space, and bandwidth that the packets just fly
through easily. The trouble with this solution is that it is
expensive. As time goes on and designers have a better idea
of how much is enough, this technique may even become
practical. To some extent, the telephone system is over-
provisioned. It is rare to pick up a telephone and not get a
dial tone instantly. There is simply so much capacity
available there that demand can always be met [4].

3 BUFFERING

Flows can be buffered on the receiving side before being
delivered. Buffering them does not affect the reliability or
bandwidth, and increases the delay, but it smoothes out the
jitter. For audio and video on demand, jitter is the main
problem, so this technique helps a lot [4].

In Fig. 1 we see a stream of packets being delivered
with substantial jitter. Packet 1 is sent from the server at t =
0 sec and arrives at the client at t = 1 sec. Packet 2
undergoes more delay and takes 2 sec to arrive. As the
packets arrive, they are buffered on the client machine.

T

————————————————
 Harshvardhan Aggarwal is currently pursuing bachelors degree program

in computer science engineering in Guru Gobind Singh Indraprastha
University, India, PH-01122524972. E-mail: harshvardhan161@gmail.com

mk:@MSITStore:D:/Academics/1%20IP%20UNIVERSITY/SEM-6/CN/Computer%20Networks%20%5bby%20-%20Andrew%20S.%20Tanenbaum,%204th%20Ed.%5d.chm::/0130661023_ch05lev1sec4.html#ch05fig31

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Figure 1. Smoothing the output stream by buffering
packets.

At t = 10 sec, playback begins. At this time,
packets 1 through 6 have been buffered so that they can be
removed from the buffer at uniform intervals for smooth
play. However, packet 8 has been delayed so much that it is
not available when its play slot comes up, so playback must
stop until it arrives, creating an annoying gap in the music
or movie. This problem can be alleviated by delaying the
starting time even more, although doing so also requires a
larger buffer [4].

4 TRAFFIC SHAPING

Traffic shaping aims at limiting the variations of
transmission rates within a negotiated per user flow rate
and burstiness [3]. Traffic shaping is a traffic
management technique which delays some or
all datagrams to bring them into compliance with a
desired traffic profile. In the above example, the source
outputs the packets with a uniform spacing between them,
but in other cases, they may be emitted irregularly, which
may cause congestion to occur in the network. Non-
uniform output is common if the server is handling many
streams at once, and it also allows other actions, such as fast
forward and rewind, user authentication, and so on. Also,
the approach we used here (buffering) is not always
possible, for example, with videoconferencing. However, if
something could be done to make the server (and hosts in
general) transmit at a uniform rate, quality of service would
be better. Traffic shaping smooths out the traffic on the
server side, rather than on the client side [4].

Traffic shaping is about regulating the average rate
(and burstiness) of data transmission. When a connection is
set up, the user and the subnet (i.e., the customer and the
carrier) agree on a certain traffic pattern (i.e., shape) for that
circuit. Sometimes this is called a service level agreement.
As long as the customer fulfills her part of the bargain and
only sends packets according to the agreed-on contract, the
carrier promises to deliver them all in a timely fashion.
Traffic shaping reduces congestion and thus helps the
carrier live up to its promise. Such agreements are not so
important for file transfers but are of great importance for
real-time data, such as audio and video connections, which
have stringent quality-of-service requirements [4].

5 THE LEAKY BUCKET ALGORITHM

Imagine a bucket with a small hole in the bottom, as
illustrated in Fig. 2(a). No matter the rate at which water

enters the bucket, the outflow is at a constant rate, r, when
there is any water in the bucket and zero when the bucket is
empty. Also, once the bucket is full, any additional water
entering it spills over the sides and is lost (i.e., does not
appear in the output stream under the hole) [4].

Figure 2. (a) A leaky bucket with water. (b) A leaky bucket
with packets.

 The same idea can be applied to packets, as shown
in Fig. 2(b). Conceptually, each host is connected to the
network by an interface containing a leaky bucket, that is, a
finite internal queue. If a packet arrives at the queue when
it is full, the packet is discarded. In other words, if one or
more processes within the host try to send a packet when
the maximum number is already queued, the new packet is
unceremoniously discarded. This arrangement can be built
into the hardware interface or simulated by the host
operating system. It was first proposed by Turner (1986)
and is called the leaky bucket algorithm. In fact, it is
nothing other than a single-server queueing system with
constant service time [4].

The host is allowed to put one packet per clock tick
onto the network. Again, this can be enforced by the
interface card or by the operating system. This mechanism
turns an uneven flow of packets from the user processes
inside the host into an even flow of packets onto the
network, smoothing out bursts and greatly reducing the
chances of congestion.

When all the packets are of the same size (e.g.,
ATM cells), this algorithm can be used as described above.
However, when variable-sized packets are being used, it is
often better to allow a fixed number of bytes per tick, rather
than just one packet. Thus, if the rule is 1024 bytes per tick,
a single 1024-byte packet can be admitted on a tick, two
512-byte packets, four 256-byte packets, and so on. If the
residual byte count is too low, the next packet must wait
until the next tick [4].

http://en.wikipedia.org/wiki/Datagram
mk:@MSITStore:D:/Academics/1%20IP%20UNIVERSITY/SEM-6/CN/Computer%20Networks%20%5bby%20-%20Andrew%20S.%20Tanenbaum,%204th%20Ed.%5d.chm::/0130661023_ch05lev1sec4.html#ch05fig32
mk:@MSITStore:D:/Academics/1%20IP%20UNIVERSITY/SEM-6/CN/Computer%20Networks%20%5bby%20-%20Andrew%20S.%20Tanenbaum,%204th%20Ed.%5d.chm::/0130661023_ch05lev1sec4.html#ch05fig32

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

6 THE TOKEN BUCKET ALGORITHM

The leaky bucket algorithm enforces a rigid output pattern
at the average rate, no matter how bursty the traffic is. It is
important allow the output to speed up somewhat when
large bursts arrive, so a more flexible algorithm is needed,
preferably one that never loses data. One such algorithm is
the token bucket algorithm. In this algorithm, the leaky
bucket holds tokens, generated by a clock at the rate of one

token every T sec. In Fig. 3(a) we see a bucket holding
three tokens, with five packets waiting to be transmitted.
For a packet to be transmitted, it must capture and destroy
one token. In Fig. 3(b) we see that three of the five packets
have gotten through, but the other two are stuck waiting
for two more tokens to be generated [4].

Figure 3. The token bucket algorithm. (a) Before. (b) After.

The token bucket algorithm provides a different
kind of traffic shaping than that of the leaky bucket
algorithm. The leaky bucket algorithm does not allow idle
hosts to save up permission to send large bursts later. The
token bucket algorithm does allow saving, up to the
maximum size of the bucket, n. This property means that
bursts of up to n packets can be sent at once, allowing some
burstiness in the output stream and giving faster response
to sudden bursts of input.

Another difference between the two algorithms is
that the token bucket algorithm throws away tokens (i.e.,
transmission capacity) when the bucket fills up but never
discards packets. In contrast, the leaky bucket algorithm
discards packets when the bucket fills up.

Here, too, a minor variant is possible, in which
each token represents the right to send not one packet, but
k bytes. A packet can only be transmitted if enough tokens
are available to cover its length in bytes. Fractional tokens
are kept for future use.

The leaky bucket and token bucket algorithms can
also be used to smooth traffic between routers, as well as to
regulate host output as in our examples. However, one

clear difference is that a token bucket regulating a host can
make the host stop sending when the rules say it must.
Telling a router to stop sending while its input keeps
pouring in may result in lost data.

The implementation of the basic token bucket
algorithm is just a variable that counts tokens. The counter

is incremented by one every T and decremented by one
whenever a packet is sent. When the counter hits zero, no
packets may be sent. In the byte-count variant, the counter

is incremented by k bytes every T and decremented by
the length of each packet sent.

Policing all these schemes can be a bit tricky.
Essentially, the network has to simulate the algorithm and
make sure that no more packets or bytes are being sent than
are permitted. Nevertheless, these tools provide ways to
shape the network traffic into more manageable forms to
assist meeting quality-of-service requirements [4].

7 RESOURCE RESERVATION

Being able to regulate the shape of the offered traffic is a
good start to guaranteeing the quality of service. However,
effectively using this information implicitly means
requiring all the packets of a flow to follow the same route.
Spraying them over routers at random makes it hard to
guarantee anything. As a consequence, something similar
to a virtual circuit has to be set up from the source to the
destination, and all the packets that belong to the flow must
follow this route.

Once we have a specific route for a flow, it
becomes possible to reserve resources along that route to
make sure the needed capacity is available. Three different
kinds of resources can potentially be reserved:

1. Bandwidth.
2. Buffer space.
3. CPU cycles.

The first one, bandwidth, is the most obvious. If a

flow requires 1 Mbps and the outgoing line has a capacity
of 2 Mbps, trying to direct three flows through that line is
not going to work. Thus, reserving bandwidth means not
oversubscribing any output line [4].

A second resource that is often in short supply is
buffer space. When a packet arrives, it is usually deposited
on the network interface card by the hardware itself. The
router software then has to copy it to a buffer in RAM and
queue that buffer for transmission on the chosen outgoing
line. If no buffer is available, the packet has to be discarded
since there is no place to put it. For a good quality of
service, some buffers can be reserved for a specific flow so
that flow does not have to compete for buffers with other
flows. There will always be a buffer available when the
flow needs one, up to some maximum.

Finally, CPU cycles are also a scarce resource. It
takes router CPU time to process a packet, so a router can
process only a certain number of packets per second.
Making sure that the CPU is not overloaded is needed to
ensure timely processing of each packet.

mk:@MSITStore:D:/Academics/1%20IP%20UNIVERSITY/SEM-6/CN/Computer%20Networks%20%5bby%20-%20Andrew%20S.%20Tanenbaum,%204th%20Ed.%5d.chm::/0130661023_ch05lev1sec4.html#ch05fig34
mk:@MSITStore:D:/Academics/1%20IP%20UNIVERSITY/SEM-6/CN/Computer%20Networks%20%5bby%20-%20Andrew%20S.%20Tanenbaum,%204th%20Ed.%5d.chm::/0130661023_ch05lev1sec4.html#ch05fig34

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

At first glance, it might appear that if it takes, say,
1 µsec to process a packet, a router can process 1 million
packets/sec. This observation is not true because there will
always be idle periods due to statistical fluctuations in the
load. If the CPU needs every single cycle to get its work
done, losing even a few cycles due to occasional idleness
creates a backlog it can never get rid of [4].

8 ADMISSION CONTROL

Now we are at the point where the incoming traffic from
some flow is well shaped and can potentially follow a
single route in which capacity can be reserved in advance
on the routers along the path. When such a flow is offered
to a router, it has to decide, based on its capacity and how
many commitments it has already made for other flows,
whether to admit or reject the flow.

The decision to accept or reject a flow is not a
simple matter of comparing the (bandwidth, buffers, cycles)
requested by the flow with the router's excess capacity in
those three dimensions. It is a little more complicated than
that. To start with, although some applications may know
about their bandwidth requirements, few know about
buffers or CPU cycles, so at the minimum, a different way
is needed to describe flows. Next, some applications are far
more tolerant of an occasional missed deadline than others.
Finally, some applications may be willing to haggle about
the flow parameters and others may not. For example, a
movie viewer that normally runs at 30 frames/sec may be
willing to drop back to 25 frames/sec if there is not enough
free bandwidth to support 30 frames/sec. Similarly, the
number of pixels per frame, audio bandwidth, and other
properties may be adjustable.

As there are many parties may be involved in the
flow negotiation (the sender, the receiver, and all the
routers along the path between them), flows must be
described accurately in terms of specific parameters that
can be negotiated. A set of such parameters is called a flow
specification. Typically, the sender (e.g., the video server)
produces a flow specification proposing the parameters it
would like to use. As the specification propagates along the
route, each router examines it and modifies the parameters
as need be. The modifications can only reduce the flow, not
increase it (e.g., a lower data rate, not a higher one). When
it gets to the other end, the parameters can be established.
As an example of what can be in a flow specification,
consider the example of Table 1. It has five parameters, the
first of which, the Token bucket rate, is the number of bytes
per second that are put into the bucket. This is the
maximum sustained rate the sender may transmit,
averaged over a long time interval.

Table 1. An example flow specification.

Parameter Unit

Token bucket rate Bytes/sec

Token bucket size Bytes

Peak data rate Bytes/sec

Minimum packet size Bytes

Maximum packet size Bytes

The second parameter is the size of the bucket in

bytes. If, for example, the Token bucket rate is 1 Mbps and
the Token bucket size is 500 KB, the bucket can fill
continuously for 4 sec before it fills up (in the absence of
any transmissions). Any tokens sent after that are lost. The
third parameter, the Peak data rate, is the maximum
tolerated transmission rate, even for brief time intervals.
The sender must never exceed this rate. The last two
parameters specify the minimum and maximum packet
sizes, including the transport and network layer headers
(e.g., TCP and IP). The minimum size is important because
processing each packet takes some fixed time, no matter
how short. A router may be prepared to handle 10,000
packets/sec of 1 KB each, but not be prepared to handle
100,000 packets/sec of 50 bytes each, even though this
represents a lower data rate. The maximum packet size is
important due to internal network limitations that may not
be exceeded. For example, if part of the path goes over an
Ethernet, the maximum packet size will be restricted to no
more than 1500 bytes no matter what the rest of the
network can handle [4].

9 PACKET SCHEDULING

If a router is handling multiple flows, there is a danger that
one flow will hog too much of its capacity and starve all the
other flows. Processing packets in the order of their arrival
means that an aggressive sender can capture most of the
capacity of the routers its packets traverse, reducing the
quality of service for others. To thwart such attempts,
various packet scheduling algorithms have been devised.
One of the first ones was the fair queueing algorithm. The
essence of the algorithm is that routers have separate
queues for each output line, one for each flow. When a line
becomes idle, the router scans the queues using round
robin, taking the first packet on the next queue. In this way,
with n hosts competing for a given output line, each host
gets to send one out of every n packets. Sending more
packets will not improve this fraction.
Although a start, the algorithm has a problem: it gives more
bandwidth to hosts that use large packets than to hosts that
use small packets. An improvement is done to this
algorithm in such a way so as to simulate a byte-by-byte
round robin, instead of a packet-by-packet round robin. In
effect, it scans the queues repeatedly, byte-for-byte, until it
finds the tick on which each packet will be finished. The
packets are then sorted in order of their finishing and sent
in that order. The algorithm is illustrated in Fig. 4.

mk:@MSITStore:D:/Academics/1%20IP%20UNIVERSITY/SEM-6/CN/Computer%20Networks%20%5bby%20-%20Andrew%20S.%20Tanenbaum,%204th%20Ed.%5d.chm::/0130661023_ch05lev1sec4.html#ch05fig35
mk:@MSITStore:D:/Academics/1%20IP%20UNIVERSITY/SEM-6/CN/Computer%20Networks%20%5bby%20-%20Andrew%20S.%20Tanenbaum,%204th%20Ed.%5d.chm::/0130661023_ch05lev1sec4.html#ch05fig36

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Figure 4. (a) A router with five packets queued for line O.
(b) Finishing times for the five packets.

In Fig. 4(a) we see packets of length 2 to 6 bytes. At
(virtual) clock tick 1, the first byte of the packet on line A is
sent. Then goes the first byte of the packet on line B, and so
on. The first packet to finish is C, after eight ticks. The
sorted order is given in Fig. 4(b). In the absence of new
arrivals, the packets will be sent in the order listed, from C
to A.

One problem with this algorithm is that it gives all
hosts the same priority. In many situations, it is desirable to
give video servers more bandwidth than regular file servers
so that they can be given two or more bytes per tick. This
modified algorithm is called weighted fair queueing and is
widely used. Sometimes the weight is equal to the number
of flows coming out of a machine, so each process gets
equal bandwidth [4].

10 CONCLUSION

The key contributions of this paper were to provide details
for managing the quality of services in a network. Network
quality of service is a critical element of a successful
converged networking design. Although over-provisioning
the network bandwidth may provide adequate QoS
temporarily, additional mechanisms including traffic
shaping, buffering and admission control should be
designed into the network infrastructure. Significant
advances are constantly taking place to increase the
capabilities and its use in wireless devices also.

REFERENCES

[1] Atsushi Iwata and Norihito Fujita, “A Hierarchical Multilayer QoS
Routing System with Dynamic SLA Management”, IEEE Journal on
Selected Areas in Communication, Vol. 18, No. 12, pp. 2603-2616,
December 2000.

[2] Dimitra Vali, Sarantis Paskalis, Lazaros Merakos and Alexandros
Kaloxylos, “A Survey of Internet QoS Signalling”, IEEE Communication
Surveys and Tutorials, Vol. 6, No. 4, pp. 32-43, 2004.

[3] Theofanis G. Orphanoudakis, Christos N. Charopoulos and Helen
Catherine Leligou, “Leaky-Bucket Shaper Design Based on Time Interval
Grouping”, IEEE Communications Letters, Vol. 9, No. 6, pp. 573-575, June
2005.

[4] Andrew S. Tanenbaum, Computer Networks, Prentice Hall, March 2003.

mk:@MSITStore:D:/Academics/1%20IP%20UNIVERSITY/SEM-6/CN/Computer%20Networks%20%5bby%20-%20Andrew%20S.%20Tanenbaum,%204th%20Ed.%5d.chm::/0130661023_ch05lev1sec4.html#ch05fig36
mk:@MSITStore:D:/Academics/1%20IP%20UNIVERSITY/SEM-6/CN/Computer%20Networks%20%5bby%20-%20Andrew%20S.%20Tanenbaum,%204th%20Ed.%5d.chm::/0130661023_ch05lev1sec4.html#ch05fig36

